Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Curr Stem Cell Res Ther ; 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-20233797

ABSTRACT

INTRODUCTION: Due to the rapid progression of COVID-19 to severe and critical stages, thousands of patients have required the use of intensive care unit (ICU) treatment, placing an excessive strain on health systems. Immunomodulatory effects of Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) have shown promising results on the treatment of patients with COVID-19. However, the effect of promptly applied cell therapy on ambulatory patient prognosis has not been described. This case report presents the clinical outcome of a multimorbid, steroid-hypersensitive, COVID-19 patient treated with WJ-MSCs transplantation. CASE PRESENTATION: A 67-year-old woman with Type 2 diabetes, overweight (82 kg, 168 cm, BMI = 29.053), hypertension (60/190 mmHg) and steroid-hypersensitivity, tested positive for COVID-19 after presenting typical symptoms such as fatigue, chest pain, myalgia, nasal congestion, dysgeusia, anosmia and oxygen saturation (SpO2) 94% - 96%, with normal body temperature (36°C). The patient received pharmacologic treatment but, when symptoms worsened, WJ-MSCs were transplanted to modulate the suspected onset of the cytokine release syndrome. Significant improvement of symptoms and clinical parameters (inflammatory markers and CT score) were observed, and the patient fully recovered within a short period of time. CONCLUSION: The present case report exhibits the favorable outcome of using Wharton's Jelly Mesenchymal Stem Cells (WJ-MSCs) as an ambulatory and adjuvant therapy for COVID-19. Prompt WJ-MSCs infusion can be a safe ambulatory adjuvant therapy in COVID-19 infection care, preventing disease progression to critical stages and avoiding hospital overcrowding.

2.
Life Sci ; 319: 121524, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2275448

ABSTRACT

Exosomes are small membrane vesicles secreted by most cell types, and widely exist in cell supernatants and various body fluids. They can transmit numerous bioactive elements, such as proteins, nucleic acids, and lipids, to affect the gene expression and function of recipient cells. Mesenchymal stem cells (MSCs) have been confirmed to be a potentially promising therapy for tissue repair and regeneration. Accumulating studies demonstrated that the predominant regenerative paradigm of MSCs transplantation was the paracrine effect but not the differentiation effect. Exosomes secreted by MSCs also showed similar therapeutic effects as their parent cells and were considered to be used for cell-free regenerative medicine. However, the inefficient and limited production has hampered their development for clinical translation. In this review, we summarize potential methods to efficiently promote the yield of exosomes. We mainly focus on engineering the process of exosome biogenesis and secretion, altering the cell culture conditions, cell expansion through 3D dynamic culture and the isolation of exosomes. In addition, we also discuss the application of MSCs-derived exosomes as therapeutics in disease treatment.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Exosomes/metabolism , Cell- and Tissue-Based Therapy , Regenerative Medicine/methods , Cell Differentiation/physiology
3.
Stem Cell Investig ; 9: 4, 2022.
Article in English | MEDLINE | ID: covidwho-2253006

ABSTRACT

Background and Objective: Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods: An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings: In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions: SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.

4.
Pharmaceutics ; 14(8)2022 Aug 13.
Article in English | MEDLINE | ID: covidwho-2023992

ABSTRACT

Poly(lactic-co-glycolic acid) (PLGA) nanoparticle-based drug delivery systems are known to offer a plethora of potential therapeutic benefits. However, challenges related to large-scale manufacturing, such as the difficulty of reproducing complex formulations and high manufacturing costs, hinder their clinical and commercial development. In this context, a reliable manufacturing technique suitable for the scale-up production of nanoformulations without altering efficacy and safety profiles is highly needed. In this paper, we develop an inline sonication process and adapt it to the industrial scale production of immunomodulating PLGA nanovaccines developed using a batch sonication method at the laboratory scale. The investigated formulations contain three distinct synthetic peptides derived from the carcinogenic antigen New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO-1) together with an invariant natural killer T-cell (iNKT) activator, threitolceramide-6 (IMM60). Process parameters were optimized to obtain polymeric nanovaccine formulations with a mean diameter of 150 ± 50 nm and a polydispersity index <0.2. Formulation characteristics, including encapsulation efficiencies, release profiles and in vitro functional and toxicological profiles, are assessed and statistically compared for each formulation. Overall, scale-up formulations obtained by inline sonication method could replicate the colloidal and functional properties of the nanovaccines developed using batch sonication at the laboratory scale. Both types of formulations induced specific T-cell and iNKT cell responses in vitro without any toxicity, highlighting the suitability of the inline sonication method for the continuous scale-up of nanomedicine formulations in terms of efficacy and safety.

6.
Biomater Biosyst ; 62022 Jun.
Article in English | MEDLINE | ID: covidwho-1693905

ABSTRACT

Biomaterials offer elegant frameworks to uncover mysteries of biology and vital tools to treat diseased or damaged tissues. Complex natural materials in the living world inspire the design of many engineered biomaterial constructs. Yet, complexity in materials design introduces practical, functional, and economic constraints. These challenges point to some virtues for a simplified approach in the design of biomaterials, especially when intended for clinical impact. But what is simplicity, and how can simple synthetic systems interface and intervene with application-specific complexities in the living world? Herein, both the philosophy and inherent benefits of simplicity in biomaterials design are discussed.

7.
Adv Drug Deliv Rev ; 181: 114083, 2022 02.
Article in English | MEDLINE | ID: covidwho-1588554

ABSTRACT

Despite the massive interest and recent developments in the field of nanomedicine, only a limited number of formulations have found their way to the clinics. This shortcoming reveals the challenges facing the clinical translation of this technology. In the current article, we summarize and evaluate the status, market situation, and clinical profiles of the reported nanomedicines, the shortcomings limiting their clinical translation, as well as some approaches designed to break through this barrier. Moreover, some emerging technologies that have the potential to compete with nanomedicines are highlighted. Lastly, we identify the key factors that should be considered in nanomedicine-related research to be clinically-translatable. These can be classified into five areas: rational design during the research and development stage, the recruitment of representative preclinical models, careful design of clinical trials, development of specific and uniform regulatory protocols, and calls for non-classic sponsorship. This new field of endeavor was firmly established during the last two decades and more in-depth progress is expected in the coming years.


Subject(s)
Nanomedicine/methods , Animals , Drug Compounding/methods , Humans , Nanoparticles/chemistry
8.
Adv Drug Deliv Rev ; 179: 114002, 2021 12.
Article in English | MEDLINE | ID: covidwho-1465981

ABSTRACT

After thirty years of intensive research shaping and optimizing the technology, the approval of the first mRNA-based formulation by the EMA and FDA in order to stop the COVID-19 pandemic was a breakthrough in mRNA research. The astonishing success of these vaccines have brought the mRNA platform into the spotlight of the scientific community. The remarkable persistence of the groundwork is mainly attributed to the exceptional benefits of mRNA application, including the biological origin, immediate but transitory mechanism of action, non-integrative properties, safe and relatively simple manufacturing as well as the flexibility to produce any desired protein. Based on these advantages, a practical implementation of in vitro transcribed mRNA has been considered in most areas of medicine. In this review, we discuss the key preconditions for the rise of the mRNA in the medical field, including the unique structural and functional features of the mRNA molecule and its vehicles, which are crucial aspects for a production of potent mRNA-based therapeutics. Further, we focus on the utility of mRNA tools particularly in the scope of regenerative medicine, i.e. cell reprogramming approaches or manipulation strategies for targeted tissue restoration. Finally, we highlight the strong clinical potential but also the remaining hurdles to overcome for the mRNA-based regenerative therapy, which is only a few steps away from becoming a reality.


Subject(s)
Cell- and Tissue-Based Therapy/methods , RNA, Messenger/therapeutic use , Regenerative Medicine/trends , Tissue Engineering/methods , Animals , COVID-19 , Humans
9.
Bioeng Transl Med ; 6(3): e10246, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1347394

ABSTRACT

Nanoparticles are used in the clinic to treat cancer, resolve mineral deficiencies, image tissues, and facilitate vaccination. As a modular technology, nanoparticles combine diagnostic agents or therapeutics (e.g., elements, small molecules, biologics), synthetic materials (e.g., polymers), and biological molecules (e.g., antibodies, peptides, lipids). Leveraging these parameters, nanoparticles can be designed and tuned to navigate biological microenvironments, negotiate biological barriers, and deliver therapeutics or diagnostic agents to specific cells and tissues in the body. Recently, with the Emergency Use Authorization of the COVID-19 lipid nanoparticle vaccines, the advantages and potential of nanoparticles as a delivery vehicle have been displayed at the forefront of biotechnology. Here, we provide a 5-year status update on our original "Nanoparticles in the Clinic" review (also a 2-year update on our second "Nanoparticles in the Clinic" review) by discussing recent nanoparticle delivery system approvals, highlighting new clinical trials, and providing an update on the previously highlighted clinical trials.

10.
Int J Mol Sci ; 22(14)2021 Jul 14.
Article in English | MEDLINE | ID: covidwho-1323263

ABSTRACT

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


Subject(s)
Gene Transfer Techniques , Genetic Diseases, Inborn/therapy , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Nanoparticles/administration & dosage , Animals , Genetic Diseases, Inborn/genetics , Genetic Vectors/genetics , Humans
11.
J Inflamm Res ; 14: 2993-3013, 2021.
Article in English | MEDLINE | ID: covidwho-1315919

ABSTRACT

The looming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a long-lasting pandemic of coronavirus disease 2019 (COVID-19) around the globe with substantial morbidity and mortality. N-acetylcysteine, being a nutraceutical precursor of an important antioxidant glutathione, can perform several biological functions in mammals and microbes. It has consequently garnered a growing interest as a potential adjunctive therapy for coronavirus disease. Here, we review evidence concerning the effects of N-acetylcysteine in respiratory viral infections based on currently available in vitro, in vivo, and human clinical investigations. The repurposing of a known drug such as N-acetylcysteine may significantly hasten the deployment of a novel approach for COVID-19. Since the drug candidate has already been translated into the clinic for several decades, its established pharmacological properties and safety and side-effect profiles expedite preclinical and clinical assessment for the treatment of COVID-19. In vitro data have depicted that N-acetylcysteine increases antioxidant capacity, interferes with virus replication, and suppresses expression of pro-inflammatory cytokines in cells infected with influenza viruses or respiratory syncytial virus. Furthermore, findings from in vivo studies have displayed that, by virtue of immune modulation and anti-inflammatory mechanism, N-acetylcysteine reduces the mortality rate in influenza-infected mice animal models. The promising in vitro and in vivo results have prompted the initiation of human subject research for the treatment of COVID-19, including severe pneumonia and acute respiratory distress syndrome. Albeit some evidence of benefits has been observed in clinical outcomes of patients, precision nanoparticle design of N-acetylcysteine may allow for greater therapeutic efficacy.

12.
Stem Cells Transl Med ; 10(7): 968-975, 2021 07.
Article in English | MEDLINE | ID: covidwho-1281250

ABSTRACT

Cell-based therapies hold promise to substantially curb complications from extreme preterm birth, the main cause of death in children below the age of 5 years. Exciting preclinical studies in experimental neonatal lung injury have provided the impetus for the initiation of early phase clinical trials in extreme preterm infants at risk of developing bronchopulmonary dysplasia. Clinical translation of promising therapies, however, is slow and often fails. In the adult population, results of clinical trials so far have not matched the enticing preclinical data. The neonatal field has experienced many hard-earned lessons with the implementation of oxygen therapy or postnatal steroids. Here we briefly summarize the preclinical data that have permitted the initiation of early phase clinical trials of cell-based therapies in extreme preterm infants and describe the INCuBAToR concept (Innovative Neonatal Cellular Therapy for Bronchopulmonary Dysplasia: Accelerating Translation of Research), an evidence-based approach to mitigate the risk of translating advanced therapies into this vulnerable patient population. The INCuBAToR addresses several of the shortcomings at the preclinical and the clinical stage that usually contribute to the failure of clinical translation through (a) systematic reviews of preclinical and clinical studies, (b) integrated knowledge transfer through engaging important stakeholders early on, (c) early economic evaluation to determine if a novel therapy is viable, and (d) retrospective and prospective studies to define and test ideal eligibility criteria to optimize clinical trial design. The INCuBAToR concept can be applied to any novel therapy in order to enhance the likelihood of success of clinical translation in a timely, transparent, rigorous, and evidence-based fashion.


Subject(s)
Bronchopulmonary Dysplasia , Cell- and Tissue-Based Therapy , Premature Birth , Bronchopulmonary Dysplasia/therapy , Clinical Trials as Topic , Humans , Infant, Newborn , Infant, Premature
13.
Cell Transplant ; 30: 963689721995455, 2021.
Article in English | MEDLINE | ID: covidwho-1112412

ABSTRACT

During the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many critically ill patients died of severe pneumonia, acute respiratory distress syndrome (ARDS), or multiple organ dysfunction syndrome. To date, no specific treatments have been proven to be effective for coronavirus disease 2019 (COVID-19). In the animal models and clinical applications, mesenchymal stromal/stem cells (MSCs) have been shown safety and efficacy for the treatment of respiratory virus infection through their abilities of differentiation and immunomodulation. Besides, possessing several advantages of MSC-derived extracellular vesicles (EVs) over MSCs, EV-based therapy also holds potential therapeutic effects in respiratory virus infection. In this review, we summarized the basic characteristics and mechanisms of COVID-19 and MSCs, outlined some preclinical and clinical studies of MSCs or MSC-EVs for respiratory virus infection such as influenza virus and SARS-CoV-2, shed light on the common problems that we should overcome to translate MSC therapy into clinical application, and discussed some safe issues related to the use of MSCs.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Clinical Trials as Topic , Exosomes , Extracellular Vesicles , Humans , Patient Safety , Translational Research, Biomedical
14.
Gut Microbes ; 13(1): 1-20, 2021.
Article in English | MEDLINE | ID: covidwho-1057792

ABSTRACT

The last twenty years of seminal microbiome research has uncovered microbiota's intrinsic relationship with human health. Studies elucidating the relationship between an unbalanced microbiome and disease are currently published daily. As such, microbiome big data have become a reality that provide a mine of information for the development of new therapeutics. Machine learning (ML), a branch of artificial intelligence, offers powerful techniques for big data analysis and prediction-making, that are out of reach of human intellect alone. This review will explore how ML can be applied for the development of microbiome-targeted therapeutics. A background on ML will be given, followed by a guide on where to find reliable microbiome big data. Existing applications and opportunities will be discussed, including the use of ML to discover, design, and characterize microbiome therapeutics. The use of ML to optimize advanced processes, such as 3D printing and in silico prediction of drug-microbiome interactions, will also be highlighted. Finally, barriers to adoption of ML in academic and industrial settings will be examined, concluded by a future outlook for the field.


Subject(s)
Machine Learning , Microbiota/physiology , Artificial Intelligence , Precision Medicine
15.
Drug Deliv Transl Res ; 11(4): 1309-1315, 2021 08.
Article in English | MEDLINE | ID: covidwho-1053116

ABSTRACT

One year after the first human case of SARS-CoV-2, two nanomedicine-based mRNA vaccines have been fast-tracked, developed, and have received emergency use authorization throughout the globe with more vaccine approvals on the heels of these first two. Several SARS-CoV-2 vaccine compositions use nanotechnology-enabled formulations. A silver lining of the COVID-19 pandemic is that the fast-tracked vaccine development for SARS-CoV-2 has advanced the clinical translation pathway for nanomedicine drug delivery systems. The laboratory science of lipid-based nanoparticles was ready and rose to the clinical challenge of rapid vaccine development. The successful development and fast tracking of SARS-CoV-2 nanomedicine vaccines has exciting implications for the future of nanotechnology-enabled drug and gene delivery; it demonstrates that nanomedicine is necessary and critical to the successful delivery of advanced molecular therapeutics such as nucleic acids, it is establishing the precedent of safety and the population effect of phase four clinical trials, and it is laying the foundation for the clinical translation of more complex, non-lipid nanomedicines. The development, fast-tracking, and approval of SARS-CoV-2 nanotechnology-based vaccines has transformed the seemingly daunting challenges for clinically translating nanomedicines into measurable hurdles that can be overcome. Due to the tremendous scientific achievements that have occurred in response to the COVID-19 pandemic, years, perhaps even decades, have been streamlined for certain translational nanomedicines.


Subject(s)
COVID-19 Vaccines/administration & dosage , Drug Approval/methods , Nanomedicine/methods , Nanotechnology/methods , Translational Research, Biomedical/methods , Vaccines, Synthetic/administration & dosage , COVID-19/epidemiology , COVID-19/genetics , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Clinical Trials, Phase IV as Topic/methods , Humans , Nanomedicine/trends , Nanotechnology/trends , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , SARS-CoV-2/genetics , Translational Research, Biomedical/trends , Vaccines, Synthetic/genetics
16.
J Control Release ; 326: 164-171, 2020 10 10.
Article in English | MEDLINE | ID: covidwho-651717

ABSTRACT

The situation of the COVID-19 pandemic reminds us that we permanently need high-value flexible solutions to urgent clinical needs including simplified diagnostic technologies suitable for use in the field and for delivering targeted therapeutics. From our perspective nanotechnology is revealed as a vital resource for this, as a generic platform of technical solutions to tackle complex medical challenges. It is towards this perspective and focusing on nanomedicine that we take issue with Prof Park's recent editorial published in the Journal of Controlled Release. Prof. Park argued that in the last 15 years nanomedicine failed to deliver the promised innovative clinical solutions to the patients (Park, K. The beginning of the end of the nanomedicine hype. Journal of Controlled Release, 2019; 305, 221-222 [1]. We, the ETPN (European Technology Platform on Nanomedicine) [2], respectfully disagree. In fact, the more than 50 formulations currently in the market, and the recent approval of 3 key nanomedicine products (e. g. Onpattro, Hensify and Vyxeos), have demonstrated that the nanomedicine field is concretely able to design products that overcome critical barriers in conventional medicine in a unique manner, but also to deliver within the cells new drug-free therapeutic effects by using pure physical modes of action, and therefore make a difference in patients lives. Furthermore, the >400 nanomedicine formulations currently in clinical trials are expecting to bring novel clinical solutions (e.g. platforms for nucleic acid delivery), alone or in combination with other key enabling technologies to the market, including biotechnologies, microfluidics, advanced materials, biomaterials, smart systems, photonics, robotics, textiles, Big Data and ICT (information & communication technologies) more generally. However, we agree with Prof. Park that " it is time to examine the sources of difficulty in clinical translation of nanomedicine and move forward ". But for reaching this goal, the investments to support clinical translation of promising nanomedicine formulations should increase, not decrease. As recently encouraged by EMA in its roadmap to 2025, we should create more unity through a common knowledge hub linking academia, industry, healthcare providers and hopefully policy makers to reduce the current fragmentation of the standardization and regulatory body landscape. We should also promote a strategy of cross-technology innovation, support nanomedicine development as a high value and low-cost solution to answer unmet medical needs and help the most promising innovative projects of the field to get better and faster to the clinic. This global vision is the one that the ETPN chose to encourage for the last fifteen years. All actions should be taken with a clear clinical view in mind, " without any fanfare", to focus "on what matters in real life", which is the patient and his/her quality of life. This ETPN overview of achievements in nanomedicine serves to reinforce our drive towards further expanding and growing the maturity of nanomedicine for global healthcare, accelerating the pace of transformation of its great potential into tangible medical breakthroughs.


Subject(s)
Drug Delivery Systems , Nanomedicine , Animals , COVID-19 , Clinical Trials as Topic , Coronavirus Infections/therapy , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Nanomedicine/methods , Nanotechnology/methods , Neoplasms/therapy , Pandemics , Pneumonia, Viral/therapy
SELECTION OF CITATIONS
SEARCH DETAIL